Syllabus for the post of Lecturer in Chemical Engineering

Process Calculations and Thermodynamics

Steady and unsteady state mass and energy balances including multiphase, multi-component, reacting and non-reacting systems. Use of tie components; recycle, bypass and purge calculations; Gibb's phase rule and degree of freedom analysis.

First and Second laws of thermodynamics. Applications of first law to close and open systems. Second law and Entropy. Thermodynamic properties of pure substances: Equation of State and residual properties, properties of mixtures: partial molar properties, fugacity, excess properties and activity coefficients; phase equilibria: predicting VLE of systems; chemical reaction equilibrium.

Fluid Mechanics and Mechanical Operations

Fluid statics, surface tension, Newtonian and non-Newtonian fluids, transport properties, shellbalances including differential form of Bernoulli equation and energy balance, equation of continuity, equation of motion, equation of mechanical energy, Macroscopic friction factors, dimensional analysis and similitude, flow through pipeline systems, velocity profiles, flow meters, pumps and compressors, elementary boundary layer theory, flow past immersed bodies including packed and fluidized beds, Turbulent flow: fluctuating velocity, universal velocity profile and pressure drop.

Particle size and shape, particle size distribution, size reduction and classification of solid particles; free and hindered settling; centrifuge and cyclones; thickening and classification, filtration, agitation and mixing; conveying of solids.

Heat Transfer

Equation of energy, steady and unsteady heat conduction, convection and radiation, thermal boundary layer and heat transfer coefficients, boiling, condensation and evaporation; types of heat exchangers and evaporators and their process calculations; design of double pipe, shell and tube heat exchangers, and single and multiple effect evaporators.

Mass Transfer

Fick's laws, molecular diffusion in fluids, mass transfer coefficients, film, penetration and surface renewal theories; momentum, heat and mass transfer analogies; stage-wise and continuous contacting and stage efficiencies; HTU & NTU concepts; design and operation of equipment for distillation, absorption, leaching, liquid-liquid extraction, drying, humidification, dehumidification and adsorption, membrane separations(micro-filtration, ultra-filtration, nano-filtration and reverse osmosis).

Chemical Reaction Engineering

Theories of reaction rates; kinetics of homogeneous reactions, interpretation of kinetic data, single and multiple reactions in ideal reactors, kinetics of enzyme reactions (Michaelis-Menten and Monod models), non-ideal reactors; residence time distribution, single parameter model; non-isothermal reactors; kinetics of heterogeneous catalytic reactions; diffusion effects in catalysis; rate and performance equations for catalyst deactivation

Instrumentation and Process Control

Measurement of process variables; sensors and transducers; P&ID equipment symbols; process modeling and linearization, transfer functions and dynamic responses of various systems, systems with inverse response, process reaction curve, controller modes (P, PI, and PID); control valves; transducer dynamics; analysis of closed loop systems including stability, frequency response, controller tuning, cascade and feed forward control.

Plant Design and Economics

Principles of process economics and cost estimation including depreciation and total annualized cost, cost indices, rate of return, payback period, discounted cash flow, optimization in process design and sizing of chemical engineering equipments such as heat exchangers and multistage contactors.

Chemical Technology

Deputy Secretary

Inorganic chemical industries (sulfuric acid, phosphoric acid, chlor-alkali industry), fertilizers (Ammonia, Urea, SSP and TSP); natural products industries (Pulp and Paper, Sugar, Oil, and Fats); petroleum refining and petrochemicals; polymerization industries (polyethylene, polypropylene, PVC and polyester synthetic fibers).

dompressors, elemonitary boundary layer theory, flow paul immerted bodiest including protect and hurdced beds, Turbulent flow fluctuating velocity, universal velocity profile and pressure drap. Particle size and streps, particle tize distribution, size reduction and dessification of solid periodes, from and bindered setting; contribute and cyclonets; thickening and classification, fitration, egiption and mixing; conveying of solide. Real Transfer

Equisition of energy visitoly and unstatedy hard conduction convection and radiation thermal poundary lever and hast transfer coufficients, boiling, concensuitor and evaporation; (year of reat exchanges, and evaporators and their process calculations; design of double pine, shell and tube heat exchanges, and single and multiple effect evaporators.

Flok's laws, molecular diffusion in fulds, mass transfer coefficients, film, penetration and surface renewal theories, morpanium, have and make transfer analogies, stage-wise and controlous contracting and stage dificiencins; (ITU & NTU concepts, design and operation at equipment for fistilistion, atsorption, leaching, leguid-liquid extraction, drying, humidification, denumidification on interceptor, membrane separations(micro-filfanion, utra-fitration, fiendo-filtestion and tevers conceptor.

Demical Reaction Englanding

District of reaction rates, interface of homogeneous reactions, interpretation of straits data, single and multiple reactions in initial reactors, kinetics of anzyme reactors (Michaele-Menten and Monod bodels), non-ideal reactors, residence time distribution, single generation model, non-technical eactors, Minol is of heterogeneous celetyllo reactions diffudian affors in occurrence of a and micrometer equations for celetyn descrivation.

Instrumentation and Process Control

modeling and insertration, transfer functions and dynamic responses of weiging tyringhis, protein with inverse response, process reaction ourve, controller modes (P. Pl. and PID), control valves transducer dynamics; analysis of dosed toop systems including stability, frequency response controllet turing, rescade and level forward control